6 research outputs found

    Two and three dimensional segmentation of multimodal imagery

    Get PDF
    The role of segmentation in the realms of image understanding/analysis, computer vision, pattern recognition, remote sensing and medical imaging in recent years has been significantly augmented due to accelerated scientific advances made in the acquisition of image data. This low-level analysis protocol is critical to numerous applications, with the primary goal of expediting and improving the effectiveness of subsequent high-level operations by providing a condensed and pertinent representation of image information. In this research, we propose a novel unsupervised segmentation framework for facilitating meaningful segregation of 2-D/3-D image data across multiple modalities (color, remote-sensing and biomedical imaging) into non-overlapping partitions using several spatial-spectral attributes. Initially, our framework exploits the information obtained from detecting edges inherent in the data. To this effect, by using a vector gradient detection technique, pixels without edges are grouped and individually labeled to partition some initial portion of the input image content. Pixels that contain higher gradient densities are included by the dynamic generation of segments as the algorithm progresses to generate an initial region map. Subsequently, texture modeling is performed and the obtained gradient, texture and intensity information along with the aforementioned initial partition map are used to perform a multivariate refinement procedure, to fuse groups with similar characteristics yielding the final output segmentation. Experimental results obtained in comparison to published/state-of the-art segmentation techniques for color as well as multi/hyperspectral imagery, demonstrate the advantages of the proposed method. Furthermore, for the purpose of achieving improved computational efficiency we propose an extension of the aforestated methodology in a multi-resolution framework, demonstrated on color images. Finally, this research also encompasses a 3-D extension of the aforementioned algorithm demonstrated on medical (Magnetic Resonance Imaging / Computed Tomography) volumes

    Fast unsupervised multiresolution color image segmentation using adaptive gradient thresholding and progressive region growing

    Get PDF
    In this thesis, we propose a fast unsupervised multiresolution color image segmentation algorithm which takes advantage of gradient information in an adaptive and progressive framework. This gradient-based segmentation method is initialized by a vector gradient calculation on the full resolution input image in the CIE L*a*b* color space. The resultant edge map is used to adaptively generate thresholds for classifying regions of varying gradient densities at different levels of the input image pyramid, obtained through a dyadic wavelet decomposition scheme. At each level, the classification obtained by a progressively thresholded growth procedure is combined with an entropy-based texture model in a statistical merging procedure to obtain an interim segmentation. Utilizing an association of a gradient quantized confidence map and non-linear spatial filtering techniques, regions of high confidence are passed from one level to another until the full resolution segmentation is achieved. Evaluation of our results on several hundred images using the Normalized Probabilistic Rand (NPR) Index shows that our algorithm outperforms state-of the art segmentation techniques and is much more computationally efficient than its single scale counterpart, with comparable segmentation quality

    Survey of contemporary trends in color image segmentation

    Full text link
    corecore